TDC-I

BOTANY GENERAL

GROUP-A (150)

Algae

1.	Which of the following is a wrong statement regarding algae				
	a. algae are chlorophy	ll bearing	b. algae are autotroph	nic	
	c. algae are thalloid		d. algae are aquatic o	nly	
2.	Zoospores are	and method of	reproduction		
	a. flagellate, vegetative	e b. fl	agellate, asexual		
	c. flagellate, sexual	d. n	on-flagellate, asexual		
3.	Which of the following	algae are used as foo	d		
	a. <i>Laminaria</i>	b. Sargassum	c. Porphyra	d. all	
4.	Agar is a commercial p	roduct obtained from			
	a. algae	b. bryophytes	c. pteridophytes	d. gymnosperms	
5.	Rhodophyceae is also k	known as			
	a. green algae	b. blue-green algae	c. red algae	d. brown algae	
6.	Phaeophyceae is also k	nown as			
	a. green algae	b. blue-green algae	c. red algae	d. brown algae	
7.	Which of the following	chlorophyll is present	in all the classes of algae		
	a. chl a	b. chl b	c. chl c	d. chl d	
8.	Which of the following	combination of chlore	ophylls is present in chloro	phyceae	
	a. chl a & b	b. chl a & c	c. chl a & d	d. chl b & c	
9.	Which of the following	combination of chlore	ophylls is present in rhodo	phyceae	
	a. chl a & b	b. chl a & c	c. chl a & d	d. chl b & c	
10.	Which of the following	combination of chlore	ophylls is present in phaeo	phyceae	
	a. chl a & b	b. chl a & c	c. chl a & d	d. chl b & c	

11.	Which of the following pigments will be found in <i>Volvox</i>			
	a. chl a & b	b. chl a & c	c. chl a, b & c	d. chl b & c
12.	Chlorophyll 'b' will be j	present in		
	a. Ectocarpus	b. <i>Fucus</i>	c. Polysiphonia	d. <i>Oedogonium</i>
13.	Chlorophyll 'c' will be p	present in		
	a. Ectocarpus	b. <i>Fucus</i>	c. both d.	none
14.	Which of the following	will show the pre	esence of chlorophyll d	
	a. Chlamydomonas	b. <i>Volv</i>	ox c. Fucus	d. Batrachospermum
15.	Which of the following	green algae has	a plant body with axis and b	pranches
	a. <i>Chara</i>	b. <i>Volvox</i>	c. Oedogonium	d. Nostoc
16.	Main photosynthetic p	art in <i>Fucus</i> is		
	a. holdfast	b. stipe	c. frond d.	all
17.	Asexual reproduction i	n red algae takes	place by	
	a. uniflagellate zoospo	ore	b. biflagellae zoospore	
	c. quadriflagellate zoo	spore	d. non-flagelate spore	
18.	Which of the following	algae shows dip	lontic life cycle	
	a. <i>Volvox</i>	b. Oedogonium	c. Chara	d. <i>Fucus</i>
19.	Which of the following	algae shows hap	lontic life cycle	
	a. <i>Volvox</i>	b. Oedogonium	c. Chlamydomonas	d. all
20.	Who is known as a fath	ner of Indian phyc	cology	
	a. M.O.P. lyenger	b. J.C.Bose	c. R. Misra	d. E.J.Butler
21.	Which of the following	algal group does	not produce motile, flagella	ated cells?
	a. chlorophyta	b. chrysophyta	c. phaeophyta	d. rhodophyta
22.	Agar is extracted from	the cell wall of		
	a. rhodophyta	b. chlorophyta	c. chrysophyta	d. pyrrophyta
23.	Carposporophyte is for	und in		
	a. <i>Vovox</i>	b. <i>Chara</i>	c. Vaucheria	d. Batrachospermum

24.	Globule and	nucule	are sex	organs	of
-----	-------------	--------	---------	--------	----

	a. <i>Chara</i>	b. <i>Oedogonium</i>	c. Volvox	d. <i>Fucus</i>
25.	Which of the following	alga has a coenobial tha	llus	
	a. <i>Chara</i> b. <i>Vol</i> v	vox c. Oedogonium	d. Vaucheria	
26.	Female reproductive st	ructure of Batrachosperi	mum is called	
	a. antheridium	b. nucule	c. carpogonium	d. trichogyne
27.	Plakea stage during ase	exual reproduction is see	n in	
	a. <i>Vovox</i>	b. <i>Chara</i>	c. Ectocarpus	d. <i>Oedogonium</i>
28.	Cap cell is a characteris	tic feature of		
	a. <i>Volvox</i>	b. <i>Oedogonium</i>	c. <i>Fucus</i>	d. <i>Chara</i>
29.	Species of Oedogonium	developing antheridia c	on normal filaments are	called
	a. macrandrous	b. nannandrous c. ic	lioandrosporous d.	gynandrosporous
30.	Dwarf male formed in s	some species of <i>Oedogor</i>	nium is called	
	a. nannandrium	b. trichogyne	c. carpogonium	d. nucule
31.	Which of the following	is called stonewort		
	a. Fucus	b. <i>Volvox</i>	c. Chara	d. Vaucheria
32.	Female reproductive st	ructure of Chara is		
	a. carpogonium	b. globule	c. nucule	d. trichogyne
33.	Male reproductive stru	cture of <i>Chara</i> is		
	a. carpogonium	b. globule	c. nucule	d. trichogyne
34.	Antheridial filaments a	re present in		
	a. <i>Chara</i>	b. <i>Volvox</i>	c. Oedogonium	d. <i>Fucus</i>
35.	Sex organs are produce	d in flask-shaped concep	otacles in	
	a. <i>Chara</i>	b. <i>Fucus</i>	c. Polysiphonia	d. <i>Volvox</i>
36.	Cystocarp is formed in			
	a. Fucus b. Cha	ra c. Batrachospe	rmum d. Vol	VOX

37. Sexual reproduction is not reported in

	a. <i>Chara</i>	b.	Fucus	c. Nostoc	d. <i>Volvox</i>
38.	Which is a blue	green alga			
	a. <i>Chara</i>	b. <i>Volvox</i>	c. Ectocarp	ous d. Nostoc	
39.	Heterocyst can	be observe	ed in		
	a. <i>Nostoc</i>	b. <i>Volvox</i>	c. Chara	d. Oedogonium	
40.	Which of the fo	llowing is a	a unicellular greer	n alga	
	a. Chlamydomc	onas b.	<i>Volvox</i> c.	<i>Oedogonium</i> d.	Vaucheria
41.	<i>Vaucheria</i> belor	ngs to the o	class		
	a. xanthopyceae	e b.	chlorophyceae	c. rhodophyceae	d. phaeophyceae
42.	Which of the fo	llowing ha	s a coenocytic tha	Illus	
	a. <i>Volvox</i>	b.	Vaucheria	c. Chara	d. Oedogonium
43.	Compound zoos	spore is fou	und in		
	a. <i>Volvox</i>	b.	Vaucheria	c. Chara	d. Oedogonium
44.	Cup-shaped chlo	oroplast is	found in		
	a. Fucus	b.	Oedogonium	c. Chlamydomond	as d. Vaucheria
45.	Batrachosperm	um is a			
	a. green alga	b.	blue-green alga	c. red alga	d. brown alga
46.	In Batrachosper	<i>rmum,</i> the	whorl of branche	s of limited growth at tl	he node is called
	a. globule	b.	glomerule	c. nucule	d. cystocarp
47.	The carpospore	of Batrach	n <i>ospermum</i> devel	ops into a juvenile stag	e called
	a. chantransia s	stage b.	carpsporophyte	c. tetrasporophyt	e d. cystocarp
48.	Chantransia sta	ge of <i>Batro</i>	<i>chospermum</i> form	IS	
	a. carpospore	b.	tetraspore	c. zoospore	d. monospore
49.	Gonimoblast fila	aments car	n be observed in		
	a. <i>Fucus</i>	b. Chara	c. Oedogoi	nium d. Batraci	hospermum

50. Haplontic life cycle is seen in

a. Chara b. Volvox c. Oedongonium d. all

Fungi

51.	Which of the following type of members are not found among fungi				
	a. autotrophs	b. saprophytes	c.	parasites	d. symbionts
52.	Which of the followin	g group of fungi h	as aseptate	e coenocytic myce	lia
	a. pyhcomycetes	b. ascomycete	s c.	basidiomycetes	d. deuteromycetes
53.	Which of the followin	g is known as fun	gi imperfect	tii	
	a. phycomycetes	b. ascomycete	s c.	deuteromycetes	d. basidiomycetes
54.	Main component of c	ell wall of fungi is			
	a. cellulose	b. hemicellulos	e c.	chitin d. p	ectin
55.	Coprophilous fungi gr	ow on			
	a. bread b. lea	ther c. woo	d d.	. dung.	
56.	Which of the followin	g fungal classes is	known as "	"sac fungi"	
	a. phycomycetes	b. ascomycetes	5 C.	basidiomycetes	d. deuteromycetes
57.	Fruiting bodies of asc	omycetes are call	ed		
	a. ascospores	b. asci	c. ascocar	rps d. a	ascogenous hyphae
58.	Sex organs are absent	but sexual repro	duction tak	es place by plasm	ogamy in
	a. phycomycetes	b. ascomycetes	5 C.	basidiomycetes	d. deuteromycetes
59.	Basidia in basidiomyco	etes are formed b	у		
	a. monokaryotic myce	lium	b. dikaryo	otic mycelium	
	c. haploid mycelium		d. diploid	mycelium	
60.	Ascocarp with no spec	cial opening is cal	led		
	a. cleisotothecium	b. apotheciun	n c.	perithecium	d. pseudothecium
61.	A dolipore septum is o	haracteristic feat	ure of		
	a. phycomycetes	b. ascomycete	es c.	basidiomycetes	d. deuteromycetes

62.	Clamp connections are v	ery common in		
	a. mastigomycotina	b. ascomycotina c. b	oasidiomycotina d. d	euteromycotina
63.	The fertile layer in the as	scocarp or basidiocarp	is called	
	a. trama b. hyme	enium c. subl	hymenium d. pro	osenchyma
64.	Somatogamy is the			
	a. fusion of gametes		b. fusion of vegetative	e cells
	c. contact between two	gametengia	d. copulation between	n two gametengia
65.	Species of Albugo are			
	a. obligate parasites	b. facultative p	oarasites	
	c. obligate saprophytes	d. facultative s	saprophytes	
66.	Albugo causes which of t	the following disease		
	a. red rust	b. black rust	c. white rust	d. white smut
67.	White rust of crucifers is	s caused by		
	a. Albugo candida	b. Albugo platensis	c. Albugo bilti	d. Albugo evolvuli
68.	The mycelium of Albugo			
	a. branched	b. aseptate	c. coenocytic	d. all
69.	Hyphae of <i>Albugo</i> in the	host is		
	a. intercellular without	haustoria	b. intercellular with h	austoria
	c. intracellular without h	naustoria	d. intracellular with h	austoria
70.	Haustoria of <i>Albugo</i> is			
	a. knob like b. finge	r like c. branched	d. peltate	
71.	Zoospore of <i>Albugo</i> is			
	a. kidney shaped	b. globose c. pea	r shaped d. spi	ndle shaped
		-	-	

- 72. What is true about the zoospore of *Albugo*
 - a. it has two equal flagella, both of tinsel type
 - b. it has two equal flagella, both of whiplash type
 - c. it has two unequal flagella, the shorter being tinsel type and the longer whiplash type
 - d. it has two unequal flagella, the shorter being whiplash type and the longer tinsel type
- 73. The sporangia in *Albugo* are
 - a. produced singly on the tip of normal hyphae
 - b. produced in chains on the tip of normal hyphae
 - c. produced singly on the tip of sporangiophores
 - d. produced in chain on the tip of sporangiophore

74. In Albugo

- a. sexual reproduction is oogamous
- b. fertilization tube is formed during fertilization
- c. oospore is formed as a result of sexual reproduction
- d. all

75. Which of the following is sac fungus

	a. <i>Puccinia</i>	b. Pezi	za	c. Albugo	d.	all
76.	Coprophilous species o	f Peziza	grow on			
	a. wood	b. brea	ad	c. dung	d.	bark
77.	Which is known as cup	fungus				
	a. Erysiphe	b. Sap	rolegnia	c. Synchytrium	d.	Peziza
78.	Fruiting body of Peziza	is				
	a. stroma	b. peri	thecium	c. apothecium	d.	cleistothecium
79.	Species of Puccinia are					
	a. obligate parasites		b. facultative p	parasites		
	c. obligate saprophyte	S	d. facultative s	aprophytes		

80.	Which species of Puccinia causes black stem rust of wheat				
	a. P. graminis	<i>tritici</i> b.	P. recondita	c. P. striiformis	d. <i>P. asparagi</i>
81.	Puccinia gram	<i>inis tritici</i> is			
	a. autoecious	& microcyclic	b. het	eroecious & macrocyc	lic
	d. autoecious	& microcyclic	d. het	eroecious & microcycli	ic
82.	Primary host o	of Puccinia gram	<i>inis tritici</i> is		
	a. rice	b. maize	c. barberry	d. wheat	
83.	Secondary hos	st of <i>Puccinia gro</i>	aminis tritici is		
	a. wheat	b. barberry	c. grass	d. parthenium	
84.	Which of the f	ollowing stages	of Puccinia gram	<i>inis tritici</i> are found or	ו wheat
	i. uredineal	ii. telial	iii. basidial	iv. pycnidial v. ae	ecial
	a. iⅈ	b. i, ii, & iii	c. i, ii, iii & iv	d. i, ii, iii,iv & v	
85.	Which of the f	ollowing stages	of Puccinia gram	<i>inis tritici</i> are found or	ı barberry
	i. uredineal	ii. telial	iii. basidial	iv. pycnidial v. ae	ecial
	a. iⅈ	b. i, ii, & iii	c. i, ii, iii & iv	d. iv & v	
86.	Binucleate spo	ores in the life cy	cle of <i>Puccinia g</i>	<i>raminis tritici</i> are	
	a. uredospore	e, teleutospore,	aeciospores		
	b. uredospore	e, basidiospore,	pycniospore		
	c. uredospore	, basidiospore, j	oycniospore		
	d. basidiospor	re, pycniospore			
87.	Uninucleate sp	oores in the life	cycle of <i>Puccinia</i>	<i>graminis tritici</i> are	
	a. uredospore	e, teleutospore,	aeciospores		
	b. uredospore	e, basidiospore,	pycniospore		
	c. uredospore	, basidiospore, j	pycniospore		
	d. basidiospor	re, pycniospore			

88.	Spore of Puccinia graminis tritici that germinates on barberry			
	a. pycniospore	b. basidiospore	c. uredospore	d. teleutospore
89.	Basidial stage in Puccin	<i>ia graminis tritici</i> develo	ops from	
	a. pycniospore	b. basidiospore	c. uredospore	d. teleutospore
90.	Two-celled spore in Pu	ccinia graminis tritici is		
	a. uredospore	b. aeciospores	c. teleutospore	d. basidiospore
Lichen	S			
91.	Llichens form first com	munity in		
	a. psammosere	b. halosere	c. lithoosere	d. hydrosere
92.	Source of litmus is the	lichen		
	a. Cetraria	b. <i>Rocella</i>	c. Parmelia	d. <i>Cladonia</i>
93.	Which of the following	is known as Reindeer m	IOSS	
	a. Cetraria	b. <i>Rocella</i>	c. Parmelia	d. <i>Cladonia</i>
94.	Which of the following	is known as Iceland mos	SS	
	a. Cetraria	b. <i>Rocella</i>	c. Parmelia	d. <i>Cladonia</i>
95.	Which of the following	is a common crustose li	chen	
	a. Graphis	b. Parmelia	c. Usnea	d. <i>Cladonia</i>
96.	Which of the following	is a common foliose lich	nen	
	a. Graphis	b. Parmelia	c. Usnea	d. <i>Cladonia</i>
97.	Which of the following	is a common fruticose li	ichen	
	a. Graphis	b. Parmelia	c. Usnea	d. Physica
98.	Which of the following	structures are associate	ed with the lichen thallus	
	a. cyphellae	b. cephalodia	c. isidia d. all	
99.	The algal component o	f a lichen is called		
	a. mycobiont	b. unibiont	c. phycobiont	d. co-biont
100.	Fungal component of t	he lichens is called		
	a. mycobiont	b. phycobiont	c. mycoplasma d.	mycosome

Bryophytes

101.	In the life cycle of bryophyte the dominant generation is the			
	a. haploid gametophyte	b. diploid gametophyte		
	c. haploid sporophyte	d. diploid sporphyte		
102.	Bryophytes play important role in plant	succession on		
	a. bare rocks b. bare sand	c. newly dug pond d. bare field		
103.	The bryophytes are attached to the sub	ostratum with the help of		
	a. true roots	b. unicellular rhizoids		
	c. multicellular rhizoids	d. b & c		
104.	The main plant body of bryophyte is a			
	a. haploid sporophyte	b. diploid sporophyte		
	c. diploid gametophyte	d. haploid gametophyte		
105.	The sporophyte of bryophytes is a			
	a. multicellular free-living structure			
	b. unicellular free-living structure			
	c. multicellular structure dependent on	the gametophyte		
	d. unicellular structure dependent on the	he gametophyte		
106.	Peat, which is used as fuel is derived fro	om		
	a. <i>Marchantia</i> b. <i>Poly</i>	richum		
	c. Anthoceros d. Sph	agnum		
107.	<i>Marchantia</i> is a			
	a. thalloid liverwort b. leafy liverwo	ort c. thalloid moss d. leafy moss		
108.	In Marchantia, gemmae can be seen in	the		
	a. gemma cups b. antheridiop	hore c. archegoniophore d. capsule		
109.	Gemmae are bodies used for	reproduction		
	a. unicellular, asexual	b. unicellular, sexual		
	c. multicellular, asexual	d. multicellular, sexual		

110.	We can observe antheridiophore on the thallus of		
	a. male, Sphagnum	b. male, Marchantia	
	c. female, Sphagnum	d. female, Marchantic	1
111.	We can observe archegonioph	ore on the thall	us of
	a. male, Sphagnum	c. male, Marchantia	
	c. female, Sphagnum	d. female, Marchantic	1
112.	In the sporophyte of bryophyte	es the spores are formed	l in the
	a. foot b. seta	c. capsule	d. seta & capsule
113.	Spore of mosses germinate to	produce a filamentous s	tructure called
	a. foot b. seta	c. gemma	d. protonema
114.	Which is the correct sequence	of events in the life cycle	e of a bryophyte
	a. spore gametophyte	sporophyte	
	b. gametophyte zygote	sporophyte	
	c. Sporophyte spore	gametophyte	
	d. all		
115.	The main gametophyte of mos	s is a	
	a. branched protonema	b. unt	pranched protonema
	c. prostrate thallus	d. gar	netophore
116.	In moss, the leafy gametophyte	e is formed	
	a. directly by the germination	of the spore	
	b. from a lateral bud developi	ing on the protonema	
	c. from secondary spores form	ned by the division of sp	ores
	d. by the germination of spore	e mother cell	
117.	Retort cells are found in		
	a. Porella b. Marchantia	c. Sphagnum	d. Anthoceros
118.	Which of the following does no	ot belong to hepaticopsid	da
	a. Marchantia b. Peli	lia c. Ant	hoceros d. Riccia

119.	. Which of the following has <i>Nostoc</i> in its thallus				
	a. Marchantia	b. <i>Riccia</i>	c. Sphagnum	d. Anthoceros	
120.	Sphagnum is commo	only known as			
	a. reindeer moss	b. club moss	c. peat moss	d. Iceland moss	
121.	Which of the followi	ng group is commonly kno	own as liverworts		
	a. lycopsida	b. anthocerotopsida	c. hepaticopsida	d. bryopsida	
122.	Which of the followi	ng group is commonly kno	own as hornworts		
	a. lycopsida	b. anthocerotopsida	c. hepaticopsida	d. bryopsida	
123.	Pseudoelaters occur	in the capsule of			
	a. Sphagnum	b. <i>Marchnatia</i>	c. <i>Riccia</i>	d. Anthoceros	
124.	Nostoc colonies are	present in the thallus of			
	a. <i>Riccia</i>	b. <i>Marchantia</i>	c. Anthoceros	d. Sphagnum	
125.	Elaterophore is prese	ent in the capsule of			
	a. <i>Riccia</i>	b. <i>Marchantia</i>	c. Pellia	d. Sphagnum	
Pterido	phytes				
126.	The main plant body	of a pteridophyte is a			
	a. haploid gametopl	nyte b. dip	loid gametophyte		
	c. haploid sporophy	te d. dip	loid sporophyte		
127.	A strobilus or cone is	s compact structure forme	d by the		
	a. leaves	b. sprophylls	c. roots d. sop	res	
128.	The gametophyte of	pteridophyte is called a			
	a. thallus	b. prothallus	c. protonema	d. sorus	
129.	Pteridophytes produ	cing only one type of spo	e are called		
	a. isosporous	b. heterosporous c.	homosporous d.	monosporous	
130.	Pteridophytes produ	cing two types of spore a	re called		
	a. isosporous	b. heterosporous c.	homosporous d.	monosporous	

131. Which of the following is heterosporous

	a. Lycopodium	b. <i>Marsilea</i>	c. <i>Equisetum</i> d.	all
132.	In pteridophytes, a sp	orangium arising from	a group of initials is called	
	a. pseudosporangium	b. eusporangium	c. leptosporangium	d. polysporngium
133.	In pteridophytes, a sp	orangium arising from	a single initial cell is called	
	a. pseudosporangium	n b. eusporangium	c. leptosporangium	d. unisporngium
134.	Sporangia are formed	in specialized structur	e called sporocarp in	
	a. Marsilea	b. Selaginella	c . Lycopodium	d. Equisetum
135.	In many ferns, sporan	gia are present in the f	form of organized groups c	alled
	a. sorus	b. sporocarp	c. telome	d. strobilus
136.	Circinate vernation is	a characteristic of		
	a. psilophyta	b. lycophyta	c. sphenophyta	d. pterophyta
137.	Which of the followin	g is not included in ste	le	
	a. endodermis	b. pericycle	c. vascular tissues	d. pith
138.	Which of the followin	g steles has a pith		
	a. haplostele	b. actinostele	c. plectostele	d. siphonostele
139.	A stele without a pith	is called		
	a. protostele	b. monostele	c. siphonostele	d. unistele
140.	The spore of the pteri	dophytes germinates t	o form	
	a. prothallus	b. protonema	c. protocorm	d. embryo
141.	Lycopodiums are com	monly known as		
	a. club moss	b. ground pine	c. trailing evergreens	d. all
142.	Lycopodium is divided	l into two subgenera		
	a. Urostachya & Hom	oeophyllum	b. Urostachya & Rhop	alostachya
	c. Homoeophyllum &	Heterophyllum	d. Rhopalostachya & H	leterophyllum
143.	Which of the followin	g stele is not found Lyc	copodium	
	a. plectostele b.	actinostele	c. mixed protostele	d. siphonostele

144.	44. Which of the following types of gametophytes is found in <i>Lycopodium</i>			
	a. Cernuum type	b. Clavatum type	c. Phlegmaria type	d. all
145.	Protocorm is found in			
	a. <i>Psilotum</i>	b. <i>Isoetes</i>	c. Pteris	d. Lycopodium
146.	Which of the following	; is commonly known as	horsetail	
	a. Equisetum	b. Selaginella	c. Lycopodium	d. Pteris
147.	The spores of Equisetu	m have four spirally arra	anged ribbon-like bands	called
	a. trabeculae	b. elaterophore	c. elaters	d. tapetum
148.	Outer wall of the epide	ermis of <i>Equisetum</i> stem	is impregnated with	
	a. magnesium	b. calcium	c. silica d. iror	n
149.	Vallecular canals are p	resent in the stem of		
	a. Equisetum	b. Selaginella	c. Psilotum	d. Pteris
150.	In Equisetum the spore	angia are borne in		
	a. sporophyll	b. sporocarp	c. sporangiophore	d. none
GROUF	Р-В (150)			
Gymno	osperms			
151.	The name Gymnosper	ms is derived from the G	ireek word 'gymnos' whi	ch means

	a. empty	b. closed	c. naked	d. inverted
152.	Plant group considere	d as 'phanerogams with	out ovary'	
	a. gymnosperms	b. angiosperms	c. pteridophytes	d. bryophytes
153.	3. Plants with naked seeds are			
	a. gymnosperms	b. angiosperms	c. pteridophytes	d. bryophytes
154.	The endosperm of gy	mnosperms is		
	a. a part of the female gametophytec. a part of the nucellus		b. a part of t	he male gametophyte
			d. a part of t	he integument

155. Endosperm of gymnosperms is

	a. haploid	b. diploid	c. triploid	d. tetraploid
156.	Pinus belongs to the or	der		
	a. cyacadales	b. coniferales	c. taxales	d. ephedrales
157.	Chilghoza pine is			
	a. Pinus insularis	b. Pinus longifolia	c. Pinus excels	d. Pinus gerardiana
158.	Foliage leaf of <i>Pinus</i> is			
	a. scale like	b. needle like	c. blade like	c. lanceolate
159.	The dwarf shoot of Pin	us bearing foliage leaves	is called	
	a. spur b. con	e c. strobilus	d. cataphyll	
160.	Vascular bundles of Pi	nus stem are		
	a. conjoint, collateral,	open & endarch	b. conjoint, collateral,	closed & endarch
	c. conjoint, collateral,	open & exarch	d. conjoint, collateral,	closed & exarch
161.	In <i>Pinus</i>			
	a. vascular bundles are	e arranged in a ring in th	e stem	
	b. root has mycorrhiza	l association		
	c. branches are of two	types- long shoot and d	warf shoot	
	d. all			
162.	What is true about Pine	us		
	a. resin canals are pres	sent in the cortex of ster	n	
	b. wood is pycnoxylic			
	c. wood of Pinus has b	ars of Sanio		
	d. all			
163.	The terminal expanded	l sterile part of the micro	osporophyll of <i>Pinus</i> is ca	alled
	a. apophysis	b. paraphysis	c. epiphysis	d. telome

164.	Microspores released in huge quantities in <i>Pinus</i> is called					
	a. shower of phospl	horous	b. shower of	sulphur		
	c. phosphorous clou	bu	d. sulphur cl	oud		
165.	Microspore of Pinus					
	a. smooth b. s	pinous c. wing	ed d. po	orous		
166.	In <i>Pinus</i>					
	a. both microsporo	phylls and megaspo	rophylls occur	r singly		
	b. both microsporo	phylls and megaspro	ophylls occur i	in cones		
	c. microsporophylls	occur singly but me	gasporophylls	s occur in cones		
	d. microsporophylls occur in cones but megasporophylls occur singly					
167.	Two types of scales, bract scales and ovuliferous scales are found in					
	a. microsporophyll	of Cycas	b. m	negsporophyll of	Cycas	
	c. microsporophyll o	of Pinus	d. m	negsporophyll of	Pinus	
168.	Male gametes of Pir	nus are				
	a. large b. t	op shaped	c. multiciliat	e d. no	n-flagellate	
169.	Pollination in Pinus t	takes place by				
	a. wind b. v	vater	c. insect	d. bir	d	
170.	In <i>Pinus</i>					
	a. branches are dim	orphic				
	b. polyembryony is	seen				
	c. perisperm is pres	ent				
	d. all					
Taxono	my of angiosperms					
171.	Who is the author o	f "Species Plantarur	n"			
	a. Linnaeus	b. Engler & Pra	ntl c. Be	essey d. de	Candolle	
172.	System of classificat	ion proposed by Lin	naeus can be	considered as		
	a. artificial	b. natural	c. ph	nylogenetic	d. numerical	

173.	3. Bentham & Hooker system of classification may be considered as					
	a. artificial	b. natural	c. phylogenetic	d. numerical		
174.	Whose classification	n may be considered as p	phylogenetic			
	a. Linnaeus	b. Engler & Prantl	c. Bentham & Hooke	r d. Hutchinson		
175.	Bentham & Hooker	published their classifica	ation as			
	a. Species Plantarur	n	b. Genera Pl	antarum		
	c. Theorie Elementa	aire de la Botanique	d. Methodus	Plantarum Nova		
176.	Bentham & Hooker	divided dicotyledons int	o the groups			
	a. polypetalae, gamopetalae, monochlamydeae					
	b. polypetalae, gamopetalae, archichlamydeae					
	c. unipetalae, gamo	eae				
	d. polypetalae, gan	nopetalae, metachlamyo	leae			
177.	Bentham & Hooker	divided Polypetalae into				
	a. 2 series b. 3	series c. 4 series	d. 5 series			
178.	Bentham & Hooker	divided Gamopetalae in	to			
	a. 2 series b. 3	series c. 4 series	d. 5 series			
179.	Monochlamydeae w	as divided by Bentham	& Hooker into			
	a. 4 series b. 5	series c. 7 series	d. 8 series			
180.	Bentham & Hooker	divided monocotyledon	s directly into			
	a. 4 series b. 5	series c. 7 series	d. 8 series			
181.	Polypetalae in Benth	nam & Hooker system of	f classification includes the	e series		
	a. thalamiflorae	b. disciflorae	c. calyciflorae	d. all		
182.	Gamopetalae in Ben	itham & Hooker system	of classification includes t	he series		
	a. inferae b. h	neteromerae	c. bicarpellatae	d. all		
183.	Hutchinson publishe	ed his classification as				
	a. Genera of flower	ing plants b. Famil	ies of flowring plants	c. both d. none		
184.	Hutchinson was asso	ociated with the Royal B	otanical Gardens in			
	a. London	b. Kew c. E	Brussels d. Vi	enna		

185. Hutchinson divided dicotyledons into divisions

		,					
	a. Lignosae	b. Herbaceae	c. Calyciferae	d. a & b			
186.	Hutchinson divided mo	onocotyledons into divisi	ons				
	a. Calyciferae	b. Corolliferae	c. Glumiflorae	d. all			
187.	Hutchinson considered	that					
	a. evolution is both do	wnwards and upwards					
	b. evolution does not	necessarily involve all or	gans at the same time				
	c. the evolution has be	een consistent					
	d. all						
188.	8. Which of the following is not an assumption of Hutchinson						
	a. dicots are primitive compared to monocots						
b. polypetaly is more primitive than gamopetaly							
	c. apetalous flowers a	re derived from flowers	with petal				
	d. syncarpy is primitive	e than apocarpy					
189.	Binomial system of nor	menclature was introduc	ced by				
	a. Linnaeus	b. Bessey	c. Engler & Prantl	d. Hutchinson			
190.	Scientific names of pla	nts are based on agreed	principles and criteria w	hich are provided in			
191.	 a. International Code b. International Council c. International Code d. Universal Code for Botanical names are get 	for Botanical Nomenclat cil for Botanical Nomenc for Botanical Naming Botanical Nomenclature enerally in	ture lature				
	a. arabic b. rom	nan c. greek	d. latin				
192.	In a biological name th	e first part is called	and second part				
	a. family name, generio	name b. fan	nily name, specific epithe	et			
	c. generic epithet, spec	cific epithet d. ger	eric name, family name				
193.	Verticillaster infloresce	nce is a characteristic fe	eature of the family				
	a. Ranunculaceae	b. Euphorbiaceae	c. Acanthaceae	d. Lamiaceae			

194. Unisexual flowers are found in

	a. Apocyanaceae	b. Cucurbitaceae	c. Lamiaceae	d. Acanthaceae		
195.	Lamiaceae was formerl	y known as				
	a. Labiatae	b. Apocyanaceae	c. Euphorbiaceae	d. Acanthaceae		
196.	Spikelet is found in					
	a. Apocyanaceae	b. Lamiaceae	c. Poaceae	d. Euphorbiaceae		
197.	Labellum is seen in the	flower of				
	a. Amaranthaceae	b. Orchidaceae	c. Ranunculaceae	d. Poaceaea		
198.	Poaceae was known ea	rlier as				
	a. Labiatae	b. Graminae	c. Verbenaceae	d. Rubiaceae		
199.	Tulsi belongs to the fan	nily				
	a. Poaceae	b. Orchidaceae	c. Acanthaceae	d. Lamiaceae		
200.	Cereals belong to family					
	a. Orchidaceae	b. Lamiaceae	c. Poaceae	d. Cucurbitaceae		
Anator	ny					
201.	The term meristem is d a. greek, divided	erived from wor b. latin, divided	rd 'meristos' which mear I	JS		
	c. greek, growth	d. latin, growth	1			
202.	Which of the following	is responsible for produc	cing secondary tissues:			
	a. apical meristem	b. intercalary n	neristem			
	c. lateral meristem	d. all				
203.	Which of the follow	ing is a lateral meristem				
	a. intrafascicular	cambium	b. interfascicular camb	ium		
	c. cork cambium		d. all			
204.	Cells of which of the	e following tissues retain	the power of cell divisio	n		
	a. vascular tissue		b. epidermal tissue			

205.	Which of the following is not a character of parenchyma						
	a. they are generally isodiametric	b. they have thin cellulosic wall					
	c. they usually have intercellular spaces	d. they may have thick lignified wall					
206.	6. In collenchyma, the corners of the cell are thi	ckened due to the deposition of					
	all except one of the following:						
	a. Cellulose b. hemicellulose	c. pectin d. lignin					
207.	7. Which of the following statements is wrong						
	a. sclerenchyma are dead at maturity without	it protoplast					
	b collenchyma may contain chloroplasts						
	c. mechanical support in plants is mainly pro	vided by sclerenchyma					
	d. collenchyma never contain chloroplasts						
208.	8. Sclereids can be observed in						
	a. the fruit wall of nuts b. pulp	of guava					
	c. leaves of tea d. all						
209.	Which of the following xylem elements is not dead;						
	a. xylem parenchyma b. trach	eids					
	c. vessels d. xylem	fibres					
210.	Which of the following is living but lacks a nucleus at maturity:						
	a. traceids b. vessels c. sclere	eids d. sieve tubes					
211.	1. Companion cells are closely associated with						
	a. tracheids b. vessels c. phloe	em parenchyma d. sieve tubes					
212.	2. Which of the following is also called bast fibre:						
	a. phloem fibre b. xylem fibre	c. trachieds d. sclereids					
213.	3. Vessels present in xylem are						
	a. long tube like cells with thick cellulose wall	a. long tube like cells with thick cellulose walls					
	b. long tube like cells with thick lignified wall	b. long tube like cells with thick lignified walls					
	c. long tube like structures made up of cells	with thick cellulose walls					
	d. long tube like structures made up of cells with thick lignified wall						

215.	a. vessels Cuticle is abser a. roots Stomata consis a. two, dumbb	b. tracheids at from the epide b. stem t of gua	ermi c. rd c	c. sieve tube is of leaves	es	d. phloem pare d. all	enchyma
215. 216.	Cuticle is abser a. roots Stomata consis a. two, dumbb	b. stem b. stem t of gua	ermi c. rd c	is of leaves		d. all	
216.	a. roots Stomata consis a. two, dumbb	b. stem t of gua	c. rd c	leaves		d. all	
216.	Stomata consis a. two, dumbb	t of gua	rd c				
	a. two, dumbb			ells which are	e usually	/ shape	ed
i		ell b. two,	, bea	an	c. three	e, dumbbell	d. three, bean
217.	Which of the fo	ollowing stateme	ents	is correct			
	i. walls of guard cells facing stomatal pore are thick						
	ii. walls of gua	rd cells facing st	oma	atal pore are	thin		
	iii. walls of gua	rd cells away fro	om s	stomatal pore	e are thi	n	
	iv. walls of guard cells away from stomatal pore are thick						
	a. i&iii	b. ii & iii	C.	i & iv	d. ii &	iv	
218.	Specialized epi	dermal cells suri	roun	nding the gau	rd cells	are called	
i	a. bulliform ce	lls	b.	hydathodes			
	c. complement	tary cell	d.	subsidiary co	ells		
219.	Which of the fo	ollowing is not in	ncluc	ded in the gro	ound tiss	sue system	
;	a. epidermis	b. xyle	em	c. phlo	em	d. all	
220.	Mesophyll is th	e term used for	the		- of		
i	a. epidermis, le	eaves	b.	ground tissu	ie, leave	25	
1	c. ground tissu	e, stem	d.	vascular bur	ndle, lea	ves	
221.	Leaves possess	vas	scula	ar bundle and	d roots p	ossess	
;	a. conjoint, rac	dial	b.	radial, conjoi	int		
	c. conjoint, con	joint	d.	conjoint clos	ed, radia	al	
222.	In the vascular	bundles of dicot	t ste	m, the camb	ium		
i	a. surrounds th	ne xylem		b. surro	ounds th	e phloem	
	c. surrounds th	e vascular bund	le	d. pres	ent betv	veen xylem and	phloem

223.	In the transverse section of an angiospermic root, the right sequence of tissue from periphery to centre is						
	a. epidermis, cortex, endodermis, pith, pericycle						
	b. epidermis, cortex, pericycle, endodermis, pith						
	c. epidermis, pericycle, cortex, endodermis, pith						
	d. epidermis, cortex, en	ndodermis, pericycle, pi	th				
224.	The innermost layer of c	cortex is called					
	a. endodermis	b. mesodermis	c. epicycle	d. pith			
225.	Which of the following s	statements is wrong ab	out endodermis of roots				
	a. it is a single layered s	tructure					
	b. it is the innermost layer of the cortex						
	c. it is a multilayered structure						
	d. its wall has casparian strips						
226.	Which of the following is not true for roots						
	a. radial vascular bundle	es b. unio	cellular hair				
	c. endodermis	d. mu	lticellular hair				
227.	Initiation of lateral roots takes place from						
	a. epidermis	b. cortex	c. endodermis	d. pericycle			
228.	All tissues on the inner side of the endodermis constitute						
	a. stele b. pith	c. pericycle	d. periderm				
229.	Which of the following is	s not included in stele					
	a. endodermis	b. pith c. vasc	ular bundles d. per	icycle			
230.	Which of the following i	s not true about the va	scular bundle of dicot st	em			
	a. it is conjoint	b. it is open	c. it is closed	d. it is endarch			
231.	What is not true about the monocot stems						
	a. vascular bundles are	conjoint and closed					
	b. vascular bundles are	scattered					
	c. vascular bundles are	surrounded by bundle	sheath				
	d. vascular bundles are separated by medullary rays						

232.	What is true about intrfascicular cambium							
	a. it is a primary lateral meristem present in vascular bundle of dicot stem							
	b. it is a secondary lateral meristem present in vascular bundle of dicot stem							
	c. it is a primary intercalary meristem present in vascular bundle of dicot stem							
	d. it is seconda	ary intercalary n	neristem prese	ent in vasc	cular bundle of	dicot stem		
233.	What is true about interfascicular cambium							
	i. it is a latera	l meristem			ii. it is a seco	ndary meristem		
	iii. it develops	from medullary	rays		iv. it develops	s from pith		
	a. i, ii	b. i, ii, iii	c. i, i	i, iv	d. ii, iii			
234.	Which of the fo	ollowing can not	be seen in a r	nonocot si	tem			
	i. heartwood	ii. sapwood	iii. sprir	ig wood	iv. autum	n wood		
	a. i	b. i & ii	c. i, ii & iii		d. i, ii, iii, & iv			
235.	Another name	of cork cambiur	n is					
	a. phellem	b. phe	ellogen	c. per	iderm	d. phelloderm		
236.	Cork is also kno	own as						
	a. phellem	b. phe	llogen	c. per	iderm	d. phelloderm		
237.	Secondary cortex is also called							
	a. phellem	b. phe	llogen	c. per	iderm	d. phelloderm		
238.	Bark refers to all tissues external to							
	a. vascular car	nbium	b. cork cam	cork cambium				
	c. endodermis		d. pericycle					
239.	Which of the fo	ollowing is involv	nation of a	an annual ring				
	i. spring woo	d	ii. autumn w	vood				
	iii. heartwood		iv. sapwood					
	a. i	b. i & ii	c. iii & iv		d. i, ii, iii, & iv	J		
240.	The most acce	pted theory to e	xplain shoot a	pex organ	ization in angio	sperms is		
	a. apical cell th	neory		b. hist	togen theory			
	c. tunica-corp	us theory	d. Kor	per-Kappe theo	ory			

241.	Which of the following theories is the most accepted theory for root apex organization							
	a. apical cell theory		b. histogen theory	b. histogen theory				
	c. tunica-corpus theor	Ŷ	d. Korper-Kappe th	eory				
242.	Fusiform initials and ray initials are components of							
	a. vascular cambium	b. xylem	c. phloem d. r	medullary ray				
243.	Axial system of secondary vascular tissue arises from							
	a. fusiform initials of t	he cambium	b. ray initials of the	cambium				
	c. both from fusiform	and ray initials	d. none	d. none				
244.	Which of the following type of sclereids is known as stone cells							
	a. brachysclereid	b. macrosclereid	c. osteosclereid	d. trichosclereid				
245.	Which of the following is a monocot plant but shows secondary growth							
	a. Boerhaavia	b. <i>Dracaena</i>	c. Tinospora	d. Amaranthus				
246.	In <i>Dracaena</i> stem, can	nbium is formed by the a	activity of the					
	a. epidermal cells	b. cortical cells	c. endodermal cells	d. none				
247.	The activity of cambium in Dracaena results in the formation of							
	a. conjoint, collateral, closed vascular bundle							
	b. conjoint, collateral, open vascular bundle							
	c. conjoint, concentric, amphivasal vascular bundle							
	d. conjoint, concentric, amphicribral vascular bundle							
248.	What is the anomaly in secondary growth of Boerhaavia							
	a. formation successive cambial rings							
	b. formation of extrastelar cambium							
	c. formation of interxylary phloem							
	d. formation of interxylary cork							
249.	Cortical vascular bund	les are found in						
	a. <i>Boerhaavia</i>	b. Dracaena	c. Tinospora	d. all				

250.	Which of the following is a bone shaped sclereid						
	a. brachysclereid	b. macrosclereid	c. osteosclereid	d. trichosclereid			
Embryc	blogy						
251.	In angiosperms, gener	ative nucleus divides to	form				
	a. 2 male nuclei	b. 3 male nuclei	c. 2 female nuclei	d. 3 female nuclei.			
252.	Embryo sac is located	inside the					
	a. stigma	b. ovule c. micr	opyle d. style	2			
253.	Which of the following	g statements is correct					
	a. sporogenous tissu	e is haploid					
	b. hard outer layer o	f pollen is called intine					
	c. tapetum nourishes	s the developing pollen					
254.	d. microspores are p Functional megaspore	roduced by endotheciun e in a flowering plant dev	n velops into				
	a. endosperm	b. ovule c. eml	bryo-sac d. em	bryo			
255.	What is the function o	of the filiform apparatus?					
	a. guide the entry ofb. recognize the suitac. produce nectard. stimulate division	pollen tube able pollen at the stigma of the generative cell	I				
256.	A mass of nutritive ma	aterial outside the embry	o sac is called				
	a. protoplasm	b. pericarp	c. ectoderm	d. perisperm			
257.	Exine layer of pollen g	rain is made up of					
	a. sporopollenin	b. pectin	c. cellulose	d. chitin			
258.	Embryo sac of angiosp	perm is					
	a. 6-celled	b. 7-celled	c. 8-celled	d. 7-celled			
259.	Which layer of micros	porangium provides nut	rition to the developing	oollen grains			
	a. epidermis	b. endothecium	c. tapetum	d. none			

260. A typical angiospermic anther is

	a. bilobed	b. unilobed	c. trilobed	d. tetralobed
261.	Occurrence of more th	nan one embryo in a see	d is known as	
	a. polyembryony	b. parthenocarpy	c. apomixis	d. embryogeny
262.	Double fertilization a	nd triple fusion were dis	covered by	
	a. Hofmeister b.	Nawaschin and Guigna	rd c. Leeuwenhoek	d. Strasburger
263.	Development of fruit v a. adventitive embryo c. parthenocarpy	without involving fertiliz ony	ation is b. polyembryony d. parthenogenesis	
264.	Male gametophyte of	angiosperms is		
	a. microsporangium	b. nucellus	c. microspore	d. stamen
265.	Which of the followin	g pair has haploid struct	ures	
266.	 a. nucellus and antip b. antipodal cells and c. antipodal cells and d. nucellus and prime Syngamy means 	oodal cells d egg cell d megaspore mother cel ary endosperm nucleus	I	
	a. fusion of gametes		b. fusion of cytoplasm	S
	c. fusion of two simi	lar pores	d. fusion of two dissin	nilar spores
267.	Double fertilization isa. two eggsb. two eggs and polac. one male gameted. one male gamete	fusion of ar nuclei with pollen nuc with egg and other with with egg and other with	lei synergid secondary nucleus	
268.	Ovule is straight with fu	iniculus, embryo sac, ch	alaza and micropyle lyin	g on one straight
	a. orthotropous	b. anatropous	c. campylotropous	d. amphitropous
269.	The primary endospe	rm nucleus is		
	a. tetraploid	b. triploid	c. diploid	d. haploid
270.	The male gametes of number in the female a. 12, 24,12	rice plant have 12 chron gamete, zygote and the b. 4.12.12	nosomes in their nucleus e cells of the seedling wil c. 12, 24, 24	s. The chromosome l be, respectively, d. 24. 12. 24

271.	W	hich of the followin	g is	a post-fertili	zati	on ever	nt ir	n flow	ering plants	?	
	а. с.	transfer of pollen formation of flowe	gra er	ins				b. d.	embryo de formation	evelo of p	opment ollen grains
272.	The number of chromosomes in the shoot tip cells of a maize plant is 20. The num chromosomes in the microspore mother cells of the same plant shall be							ne number of			
	a.	20	b.	10		C.	40)		d.	15
273.	3. If the endosperm cell of a dicot plant contains 30 chromosomes, find the number chromosomes present in the root cells of the plant						umber of				
	a.	40	b.	10		C.	20)		d.	15
274.	W	hich of the tissue cu	ultu	re will form a	a tri	ploid pl	ant				
	a.	endosperm	b.	pollen		C.	m	egasp	oore	d.	ovule
275.	Fo	r the formation of e	emb	oryo sac, the	me	gaspore	e mo	other	cell undergo	oes	
	a. b. c. d.	two meiotic & two one meiotic & thre two meiotic divisio one meiotic & two	o m ee n ons o mi	itotic divisior nitotic divisic totic division	ns ons s						
276.	Th	e largest cell in an e	emb	oryo sac is-							
	a.	egg	b.	central cell		c.	sy	nergi	d	d.	antipodal cell
277.	In	which part of a flow	ver	do both mei	osis	& ferti	lizat	tion o	ccur?		
	a.	ovule	b.	stigma		c.	ar	nther		d.	petal
278.	Or	ne meiosis produces	s hc	ow many mal	e ga	metes	?				
	a.	4	b.	2		C.	1			d.	8
279.	Fa	ther of Indian embr	yol	ogy is							
	a.	P. Maheshwari		b. Swamiı	nath	nan		c. R.	Misra	d.	Butler
280.	In	a fertilized ovule, n	, 2r	n & 3n condit	ions	s occur	res	pectiv	ely in		
	а. с.	antipodals, zygote egg, nucellus, micro	, en osp	dosperm ore	b. d.	mega: endos	spo peri	re mc m, mi	other cell, nu cropyle, egg	ucell g	us, endosperm
281.	In	coconut liquid nucl	ear	endosperm	is su	irround	led	by wh	iite kernel w	hich	n is
	а. с.	seedcoat helobial endosperr	m		b. d.	cellula fibrou:	ir er s m	ndosp esoca	erm rp		

282.	Study of pollen grains a. palynology	is b. pomology	c. palaeobotany	d. taxonomy					
283.	Which of the following is false in angiosperms								
	a. egg cell-haploidc. pollen grain- haple	b. Did d.	megaspore-diploid synergid-haploid						
284.	In which of the plants	species, parthenoca	rpy takes place?						
	a. mango	b. banana	c. peach	d. jack fruit					
285.	What is callus								
	a. tissues that grow to form an embryoid								
	b. an unorganized actively dividing the mass of cells maintained in a culture								
	c. an insoluble carbohydrate								
	d. a tissue that grows from an embryo								
286.	Androgenesis results in the formation of								
	a. haploid plants	b. diploid plants	c. triploid plants	d. tetraploid plants					
287.	The endosperm of a t	etraploid plant (4n)	will be						
	a. 2n	b. 3n	c. 4n	d. 6n					
288.	A diploid female plant	is crossed with a te	etraploid male plant. The e	ndosperm will be					
	a. 3n	b. 4n	c. 5n	d. 6n					
289.	Filiform apparatus is seen in the								
	a. megaspore								
	b. antipodal cells								
	c. central cell								
	d. synergids								
290.	Which is known as androgenesis								
	a. anther and microspore culture								
	b. embryo culture								
	c. ovary culture								
	d. nucellus culture								
291.	In some plants, all the microspores in a microsporangium remain together to form a								
	a. tetrangium	b. pollinium	c. synangium d.	multispornagium					

292. Embryo sac may be

	a.	monosporic	b.	bisporic	c.	tetrasporic	d.	all	
293.	On the basis of entry of pollen tube, fertilization may be								
	a.	porogamous	b.	chalazogamous		c. mesogamou	IS	d. all	
294.	Mature endosperm with irregularity and unevenness in its surface is called								
	a.	patterned	b.	ruminate	c.	reticulate	d.	scalariform	
295.	NP	C-system is used to	des	cribe					
	a.	megaspore	b.	pollen grain	c.	embryo sac	d.	embryo	
296.	An	oily coating over th	e po	ollen grain surface in	sor	me species of plants i	s ca	lled	
	a.	sporopllenin	b.	ectoderm	c.	reticulum	d.	pollenkitt	
297.	Em	bryonal axis is calle	d						
	a.	tigellum	b.	tegmen	c.	tapetum	d.	cotyledon	
298.	In t	the anther wall, the	lay	er of cells immediate	ly a	fter edpidermis is cal	led		
	a.	endothecium	b.	middle layers	c.	tapetum d. spo	roge	enous tissue	
299.	Pol	llination by air is cal	led						
	a.	anemophily	b.	entomophily	c.	ornithophily	d.	none	
300.	Which of the following mechanisms favours cross pollination in plants								
	a.	self-sterility	b.	dichogamy	c.	herkogamy	d.	all	